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Abstract

Multi-species kinematic flow models lead to strongly coupled, nonlinear systems of first-order, spatially one-dimen-
sional conservation laws. The number of unknowns (the concentrations of the species) may be arbitrarily high. Models
of this class include a multi-species generalization of the Lighthill–Whitham–Richards traffic model and a model for
the sedimentation of polydisperse suspensions. Their solutions typically involve kinematic shocks separating areas of con-
stancy, and should be approximated by high resolution schemes. A fifth-order weighted essentially non-oscillatory
(WENO) scheme is combined with a multiresolution technique that adaptively generates a sparse point representation
(SPR) of the evolving numerical solution. Thus, computational effort is concentrated on zones of strong variation near
shocks. Numerical examples from the traffic and sedimentation models demonstrate the effectiveness of the resulting
WENO multiresolution (WENO-MRS) scheme.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. Scope of the paper

Numerous multiphase flows in engineering applications involve the flow of one disperse substance, for
example solid mineral particles or oil droplets in an emulsion, through a continuous phase, say a liquid or
gas. In many cases, the disperse substance consists of small particles that belong to different species differing
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in some characteristic quantity such as size or density. As a consequence, the disperse substance does not move
as one phase; rather, the different species segregate and create areas of different composition. This differential
movement of the species is what practitioners in many applications are most interested in, and which is fre-
quently described by spatially one-dimensional models. In most circumstances, the diameter of the particles
is small compared to that of the flow duct, which justifies identifying each species with a continuous phase.
Our class of models also includes certain continuum approximations of traffic flow of vehicles on a highway
if cars with drivers having different preferential velocities are identified as different species.

In general, we distinguish between N different species that give rise to N superimposed continuous phases
associated with volume fractions (or, in the case of traffic flow, densities) /1, . . . ,/N. If vi is the phase velocity
of species i, then the continuity equations of the N species in differential form are
ot/i þ oxð/iviÞ ¼ 0; i ¼ 1; . . . ;N ; ð1:1Þ

where t is time and x is the spatial position (depending on the application, the domain is either bounded or
unbounded). The velocities v1, . . . ,vN are assumed to be given functions of the vector U :¼ U(x, t) :¼
(/1(x, t), . . . ,/N(x, t))T of local concentrations. This yields systems of conservation laws of the type
ot/i þ oxð/iviðUÞÞ ¼ 0; i ¼ 1; . . . ;N : ð1:2Þ

One-dimensional multi-species flow models given by (1.2), which involve no unknown flow variables other
than the concentrations, are called kinematic. We are especially interested in two specific models that have at-
tracted recent interest: one of multi-species traffic flow [2,46,49–51] and another of sedimentation of multi-spe-
cies (so-called polydisperse) suspensions [5,11,47,48].

For these and other models, solutions of initial value problems with piecewise constant data and zero-flux
or periodic initial-boundary value problems, which are relevant for applications, typically develop discontin-
uous solutions involving fans of N kinematic shocks separating sectors of constant composition. Conse-
quently, high resolution numerical schemes, which accurately resolve these shocks, are natural candidates
for the numerical solution of (1.2). In fact, Wong, Shu and their collaborators [49,51] use weighted essentially
non-oscillatory (WENO) schemes for the traffic model, while the first author and collaborators [5,9,10] and
Xue and Sun [47] applied central difference schemes [27,34] to the sedimentation model. The novelty of this
contribution is a very efficient and accurate scheme for multi-species kinematic flow models by combining
the WENO approach with an adaptive multiresolution technique involving a sparse point representation.
The resulting method is called WENO-MRS scheme. The main objective of our adaptive strategy is to reduce
the computational effort in solving systems with a large number of equations, especially when the differential
operator is discretized by an expensive upwinding scheme, for example by a WENO scheme. This reduction of
effort is mainly achieved via a sparse point representation (SPR) of the numerical solution, which produces
savings in terms of flux evaluations in regions where the solution is smooth.

In kinematic flow models, the number N of species may be large. On the other hand, the different species in
these applications are competitive. It is therefore convenient to assume a maximal density /max (for example, a
maximal ‘‘bumper-to-bumper’’ car density in traffic models or the maximal sphere packing density
/max � 0.66 in sedimentation models), such that the phase space for (1.2) is
E/max
:¼ fU ¼ ð/1; . . . ;/N Þ

T 2 RN : /1 P 0; . . . ;/N P 0;/ :¼ /1 þ � � � þ /N 6 /maxg: ð1:3Þ
Introducing the flux vector
fðUÞ ¼ ðf1ðUÞ; . . . ; fN ðUÞÞT :¼ ð/1v1ðUÞ; . . . ;/N vN ðUÞÞT; ð1:4Þ
we can rewrite (1.2) as the nonlinear system of conservation laws
otUþ oxfðUÞ ¼ 0: ð1:5Þ

Solutions of (1.5) are discontinuous in general, and the propagation speed r(U+,U�) of a discontinuity in /i

separating the states U+ and U� satisfies the well-known Rankine–Hugoniot condition
r ¼ fiðUþÞ � fiðU�Þ
/þi � /�i

: ð1:6Þ
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We recall that the system (1.5) is called hyperbolic at a state U if the Jacobian JfðUÞ :¼ ðofi=o/kÞ16i;k6N only
has real eigenvalues, and strictly hyperbolic if these are moreover pairwise distinct. For N = 2, a system with a
pair of complex conjugate eigenvalues is elliptic. In some circumstances, the type is mixed, which means that
the system is non-hyperbolic (or elliptic) for all U 2 E � E/max

and E/max
nE 6¼£. For N 6 3, the ellipticity cri-

terion can be evaluated by a convenient calculation of a discriminant [11].

1.2. Multi-species kinematic models

The kinematic traffic model for N = 1 goes back to Lighthill and Whitham [30] and Richards [35]; for
the sedimentation of suspensions, the classic reference is Kynch [28]. The extension of the Lighthill–Whi-
tham–Richards (LWR) model to multi-class traffic flow was proposed independently by Wong and Wong
[46] and Benzoni-Gavage and Colombo [2], while analogous extensions of the sedimentation model have
been suggested for several decades (see [9,48] for reviews), mainly in the chemical engineering literature.
Though the kinematic models fall within the mainstream research area of systems of conservation laws
[16,29], the application of available tools of mathematical and numerical analysis is difficult. This is largely
due to the dependence of the functions vi(U) on all variables /1, . . . ,/N, which in general is nonlinear. For
U from the interior of E/max

, JfðUÞ usually has nonzero entries only, such that closed formulas for its
eigenvalues and eigenvectors are at least complicated, and in general unavailable for N P 5. It is therefore
in general not possible to solve the Riemann problem for (1.2) in closed form. This contrasts with what is
known for many systems of conservation laws representing balances of different variables (for example,
mass, linear momentum and energy) of a single-phase flow, such as the Euler equations of gas dynamics.
Moreover, for multi-species kinematic flow models eigenvalues lack a direct physical interpretation, and in
particular do not coincide with any of the phase velocities v1, . . . ,vN. (In contrast to this, the eigenvalues
for the Euler equations of gas dynamics are the velocity of the gas, and the velocity plus or minus sound
speed.)

Most published solution constructions for multi-species kinematic flow models are based on simplifica-
tions. For example, Greenspan and Ungarish [21] and Schneider et al. [38] solve the problem of settling of
an N-disperse, initially homogeneous suspension with equal-density particle species under the assumption
that solutions exclusively consist of areas of constant composition (excluding continuous variations) that
are separated by straight, possibly intersecting kinematic shocks whose speeds are determined by the Ran-
kine–Hugoniot condition. Unfortunately, this construction violates Liu’s entropy condition (see [16]), as is
most easily seen for N = 1, where solutions do not agree with the well-established theory for a scalar con-
servation law. In fact, some of the kinematic shocks constructed in [21,38] should be replaced by rarefac-
tion waves. For the case N = 2, correct solutions including rarefaction waves were constructed by Fried
and Roy [20]. The simplification applied in [20] is the choice of the functions vi(U) = ci(1 � /) for
i = 1,2, where ci > 0 are constants. The resulting equations do not exhibit linear degeneracy, a property
that facilitates the discussion if compared to the case, for example, that the factor (1 � /) is replaced
by (1 � /)n with n > 1; this is the case more relevant to practice. A full solution construction of the latter
case for N = 2, which obeys Liu’s entropy principle, is given in [4]. However, the result does not appear in
closed or implicit form; rather, certain trajectories have to be determined by numerical integration of
ordinary differential equations.

While exact solution constructions remain difficult, great advances were made recently in the hyperbolicity
analysis and characterization of eigenvalues of multi-species kinematic models. For a model of settling of oil-
in-water dispersions, which is similar to the sedimentation and traffic models, Rosso and Sona [36] proved for
arbitrary N strict hyperbolicity in the interior of E/max

. The proof is based on deriving an explicit closed for-
mula of the characteristic polynomial pðk; UÞ ¼ detðJfðUÞ � kIÞ by exploiting elimination possibilities in the
determinant. Then p(k;U) is evaluated at N suitable k-arguments that produce values of alternating sign,
which along with a discussion of p(k;U) for k! ± 1 implies that p(k;U) must have N distinct zeros. After
preliminary analyses for N 6 3 [11], Berres et al. [5] proved in a similar way that the Masliyah–Lockett–Bas-
soon (MLB) model [5,31,32] for sedimentation of polydisperse suspensions with equal-density particles is
strictly hyperbolic for an arbitrary number N of species (size classes). The basic idea was also used by Zhang
et al. [50] to prove strict hyperbolicity of the multi-class traffic model proposed in [2,46].
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1.3. High resolution and multiresolution schemes

High resolution schemes for conservation laws are of at least second-order accuracy in regions where the
solution is smooth, and on the other hand resolve discontinuities sharply and without spurious oscillations.
Methods of this type include essentially non-oscillatory (ENO) schemes (see [40]) and central and total vari-
ation diminishing (TVD) schemes [27,34]; see also the references cited in these papers and [29,43]. Clearly, res-
olution is gained by these methods at increased computational cost, especially for systems of conservation
laws, more than one space dimension, a large number of points in the computational grid, or extended sim-
ulation times.

In light of Section 1.2, insight into an N-species kinematic flow model with N P 3 can realistically be gained
through numerical simulation only. On the other hand, N different characteristic speeds will produce solutions
of Riemann problems with a fan of up to N shocks or rarefactions which separate areas of constant compo-
sition. High resolution schemes that have been applied to multi-species kinematic models include WENO
schemes [49,51] and central difference schemes, such as the Kurganov–Tadmor [27] and Nessyahu–Tadmor
[34] schemes [5,9,10,47]. We herein pursue the WENO approach, and show that the multiresolution technique
applied to WENO schemes together with a sparse point representation (SPR) leads to an efficient and accurate
scheme for multi-species kinematic flow models.

The multiresolution method has been devised (at least, originally) to reduce the computational cost of high
resolution methods. In standard situations, the solution of a conservation law exhibits strong variations
(shocks) in small regions but behaves smoothly on the major portion of the computational domain. The mul-
tiresolution technique adaptively concentrates computational effort on the regions of strong variation. It goes
back to Harten [22] for hyperbolic equations and was used by Bihari [7] and Roussel et al. [37] for parabolic
equations. Multiresolution methods for conservation laws in several space dimensions are analyzed by Dah-
men et al. [17], while fully adaptive multiresolution finite volume schemes, including an optimized adaptive
memory storage, are presented by Cohen et al. [15]. See Chiavassa et al. [14] for a recent review on multires-
olution methods for hyperbolic conservation laws.

Adaptive methods can be separated into two classes: one based on grid refinement to resolve gradients of a
physically relevant quantity (see e.g. [24,25]), the other based on a posteriori error estimators, see e.g. [3] and
the references therein. The present paper belongs to the first of these classes.

Nonorthogonal or orthogonal wavelets are an efficient tool in developing adaptive numerical methods from
both classes [8,12,13,17,22,37]. Interpolating wavelets [18,23] are efficiently combined with linear or nonlinear
thresholding strategies in order to produce sparse approximations on a near optimal grid. It is this family of
wavelets that are used in this paper.

1.4. Contents of the paper

The remainder of this paper is organized as follows. Section 2 presents the WENO-MRS method. To this
end, we recall in Sections 2.1 and 2.2 the multiresolution representation of a function on a sequence of nested
dyadic grids, which generates a sequence of details or wavelet coefficients. It is also recalled how these details
encode information on the smoothness of a given original function, and how discarding sufficiently small
details, the so-called thresholding operation, can be used for data compression. This leads to an SPR of
the function on a sparse grid. The necessity of introducing safety points, that is, additional points near signif-
icant details, is set out in Section 2.3. The available algorithm by Harten [22] to generate the required index set
of significant positions is then recalled (Algorithm 2.1). Moreover, we specify in Algorithm 2.2 how the SPR of
the numerical solution is updated in each time step. In Section 2.4 we describe the TVD Runge–Kutta scheme
employed for the time discretization of (1.5), while Section 2.5 outlines the WENO scheme applied to the SPR
of the solution. Section 2.6 summarizes the resulting WENO-MRS scheme in Algorithm 2.3. This algorithm is
presented for zero-flux boundary conditions and a finite domain; the small changes necessary for periodic
boundary conditions are addressed in Section 2.7.

In Section 3, three different multi-species kinematic flow models are presented. Section 3.1 presents the
multi-class kinematic traffic model, which gives rise to an initial value problem with periodic boundary
conditions. Next, in Section 3.2, we outline the polydisperse sedimentation model, for which the zero-flux
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boundary condition is relevant. A similar model for the separation of oil-in-water dispersions is mentioned in
Section 3.3. Though the model is developed in a slightly different way than the sedimentation model, the final
equations are equivalent, so no solutions are presented for the dispersion model.

Finally, Section 4 presents six different numerical examples illustrating the performance of the WENO-
MRS method. Examples 1 and 2, which form Section 4.1, have been adapted from [49] and are related to
the traffic model, while Examples 3–6, presented in Section 4.2, have been taken from the sedimentation
model.
2. Multiresolution methods

2.1. Multiresolution framework

Let ðG0;G1; . . . ;GLcÞ denote a family of uniform nested grids on the interval I :¼ [a,b], where
G0 :¼ ðx0

0; x
0
1; . . . ; x0

N0
Þ, N0 = 2m, m 2 N is the finest one (the finest resolution level) and h0 :¼ (b � a)/N0 is

the finest cell length. The values of a function u on G0 are the input data. The remaining dyadically coarsened
grids are obtained in the following recursive way: given a grid Gk�1, we obtain the next coarsest grid Gk by
removing the even-indexed grid points. Therefore Gk�1nGk ¼ ðxk�1

2j�1Þj¼1;...;N k
, Gk�1 \ Gk = Gk and xk

j ¼ xk�1
2j

for 0 6 j 6 Nk = 2m�k, k = 1, . . . ,Lc. Due to the embedding of the grids, the representation of u on any coarser
grid Gk, k = 1, . . . ,Lc can be obtained directly from the finest level k = 0: uk

j ¼ uðxk
j Þ ¼ uðx0

2k j
Þ ¼ u0

2k j
for

0 6 j 6 Nk. To recover the representation of u on Gk�1 from its representation on the next coarser grid Gk,
we need an interpolation operator Iðuk; xÞ of u on Gk to obtain approximations for the missing points of
Gk�1. The function value at xk�1

2j�1 is obtained from the (r � 1)th degree polynomial interpolating the r = 2s con-
secutive points ðuk

j�s; . . . ; uk
jþs�1Þ. Therefore
~uk�1
2j�1 ¼ Iðuk; xk�1

2j�1Þ ¼
Xs

l¼1

blðuk
jþl�1 þ uk

j�lÞ; r ¼ 2s; with
b1 ¼ 1=2 for r ¼ 2;

b1 ¼ 9=16; b2 ¼ �1=16 for r ¼ 4:

�

ð2:1Þ

When the function is non-periodic, the stencil of interpolation is modified in order to consider all points

inside the domain. In this case, and for r = 4, the following interpolator is specified (instead of (2.1)):
Iðuk; xk�1
2j�1Þ ¼

1

16
�

5uk
0 þ 15uk

1 � 5uk
2 þ uk

3 for j ¼ 1;

�uk
j�2 þ 9uk

j�1 þ 9uk
j � uk

jþ1 for j ¼ 2; . . . ;Nk � 1;

uk
Nk�3 � 5uk

Nk�2 þ 15uk
Nk�1 þ 5uk

Nk
for j ¼ N k:

8><
>: ð2:2Þ
The interpolation errors, known as details or wavelet coefficients, are dk
j :¼ uk�1

2j�1 � ~uk�1
2j�1 for 1 6 j 6 Nk.

Thus, with the knowledge of uk :¼ ðuk
0; u

k
1; . . . ; uk

Nk
Þ and dk :¼ ðdk

0; d
k
1; . . . ; dk

Nk
Þ, we can exactly recover the rep-

resentation of u on Gk�1. The pair of vectors (uk,dk) is the multiresolution representation of uk�1. Applying suc-
cessively this procedure for 1 6 k 6 Lc, we can recover the values of u on the finest level of resolution from its
values on the coarsest level Lc and the sequence of all details from levels Lc to 1:
u0 $ ðd1; u1Þ $ ðd1; d2; u2Þ $ � � � $ ðd1; d2; . . . ; dLc ; uLcÞ ¼: uM; ð2:3Þ

where uM is the multiresolution representation of u0 ” u. The details dk contain information on the smoothness
of u, and will be used to flag the non-smooth parts of the solution in the adaptive numerical method.

These flags are utilized to generate a sparse numerical grid for the approximation of the solution in
each time step. To motivate this technique, we recall in Section 2.2 some results of the underlying reg-
ularity analysis and the thresholding operation. In Section 2.3, we first briefly review the known con-
struction of an SPR for a scalar function, and then explain how the sparse grid C for each time
step is built from the sets of significant positions for each of the N components of the vector-valued
function u. This set is calculated by a version of Harten’s algorithm [22] for the scalar case (our Algo-
rithm 2.1 in Section 2.3). This algorithm forms the core of our Algorithm 2.2, which describes how the
SPR is updated in each time step.
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2.2. Regularity analysis

Standard interpolation results imply that if u at a point x has p � 1 continuous derivatives and a jump dis-
continuity in its pth derivative, then for xk

j near x,
dk
j �

ðhkÞp½uðpÞ� for 0 6 p 6 �r;

ðhkÞ�ruð�rÞ for p > �r;

(
ð2:4Þ
where hk :¼ (b � a)/Nk, �r :¼ ðr � 1Þ þ 1 ¼ r is the order of accuracy of the approximation, and [Æ] denotes the
jump at the discontinuity. Therefore jdk�1

2j j � 2��pjdk
j j, if the kth level is fine enough, where �p :¼ minfp;�rg. Thus,

away from discontinuities of u, the wavelet coefficients dk
j diminish as the levels of resolution become finer, at a

rate which is determined by the local regularity of u and the order of accuracy of the approximation. In the
neighborhood of a discontinuity of the function, the details remain of the same size for all levels of refinement.

Multiresolution schemes achieve data compression, and reduction of computational effort, by considering
only details dk

j that are larger in absolute value than a certain level-dependent comparison value ek to be sig-
nificant. This means that one computes the quantities
d̂k
j :¼ trek ðdk

j Þ :¼
0 if jdk

j j < ek;

dk
j if jdk

j jP ek;

(
1 6 j 6 N k; 1 6 k 6 Lc; ð2:5Þ
where trek is the so-called thresholding or truncation operator with the level-dependent threshold parameters ek,
1 6 k 6 Lc. The computation of d̂k

j ¼ trek ðdk
j Þ is called thresholding or truncation.

For a function u that has been generated by a numerical scheme, the number �p is difficult to define. In the
numerical examples presented herein, we use the thresholding strategies ek = 2ek�1 or ek = 2.5ek�1, along with
a set value of e0, where the factor 2 or 2.5 ‘‘estimates’’ the factor 2�p at level k. Our choice of these strategies is
also based on experience with a version of the multiresolution method for scalar degenerate parabolic equa-
tions for similar models [12], and has turned out to provide a good compromise between data compression and
preservation of relevant information. Furthermore, we utilize a parameter hk which measures the lack of reg-
ularity in the details near numerically detected jump in some derivative of u. This parameter appears as a
threshold for comparison in Algorithms 2.1 and 2.2, and controls how positions on the next finer grid (on level
k � 1) near a discontinuity are marked. Therefore, if used to mark a significant position on level k � 1, jdk

j j
should be consistently compared with ek multiplied by the factor that is used to estimate 2�p. We therefore uti-
lize hk = 2ek and hk = 2.5ek, respectively.

In our case, the result of the thresholding operation is a set of markers (Boolean flags) that indicate whether
jdk

j j > ek or not, that is, whether a position (j,k) in the multiresolution is significant or not. (The computation
of this set of markers is formalized in Algorithms 2.1 and 2.2 below.) This information controls whether a
point value of u is included in the SPR of u or not.

2.3. Sparse point representation

The SPR of a function u is associated to a sparse grid C with GLc � C � G0, and consists of all exact point
values of u that correspond to positions belonging to C. The set C consists of all positions that are judged sig-
nificant according to the thresholding operation (2.5), plus all point values of the coarsest grid, and certain
safety points (this is made precise below). To build the SPR, we use a sparse data structure, storing in one
vector sequentially the point values of significant positions of u0 and in another the corresponding positions
with respect to the finest uniform grid G0. These vectors are obtained after the construction of an index set,
called D, that flags whether a detail is significant. Therefore, C is the set of grid points flagged by D.

Whenever needed for flux evaluations, values corresponding to positions not contained in the SPR are
interpolated from solution values belonging to the SPR. In other words, values of positions not belonging
to the SPR can be discarded, so that the SPR presents a way of using the compression capabilities of multi-
resolution representations. The compression effect due to the computation can be quantified by the number of
details contained in the SPR, denoted Ns. Of course, for a given function u, Ns depends substantially on the
choice of the thresholding strategy, that is, the sequence of values ek, k = 1, . . . ,Lc.
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Several variants of multiresolution methods applied to solving a differential equation differ in the evaluation
of the differential operator. This evaluation can be performed either on the SPR as a collocation method or by
finite differencing on C [24–26], or on the uniform fine grid, keeping the entire (non-sparse) representation of
ũ0 but adapting the manner in which the flux is calculated to the significant positions [7,12,13,22]. In this work
we pursue the first approach and adapt a WENO scheme to evolve the solution to the non-equidistant sparse
grid C via the concept of local scale [24]. Clearly, we need to update the SPR of after each time step of the
numerical solution, which is described in Algorithm 2.2.

In each time step, the SPR has to be able to represent and to capture the finite speed of propagation of
information and the formation of shock waves. For this reason, Harten [22] proposed to include safety points

near significant positions (for which jdk
j jP ek). Due to these safety points, the sparse grid correctly detects the

formation of shocks and their development.
The SPR of the vector-valued solution of (1.5) is based on the union of the SPRs of each of the N vector

components. To obtain the unified representation, we first compute index sets Di, i = 1, . . . ,N, each for one
component, that include the positions of the significant coefficients and the positions of safety points, and then
define the index set D :¼ D1 [ � � � [DN . Then we build an SPR for each vector component with respect to C,
which is the set of grid points from D plus all points from the coarsest level, i.e. we define
C :¼ fxk�1
2j�1j ðj; kÞ 2 Dg [ fxLc

0 ; . . . ; xLc
Lc
g ¼

[N
i¼1

fxk�1
2j�1j ðj; kÞ 2 Dig [ fxLc

0 ; . . . ; xLc
Lc
g; ð2:6Þ
and N s :¼ #C. We here recall Harten’s algorithm [22], which leads to the set Di for one component
i 2 {1, . . . ,N}. We only perform the algorithm for the entire dyadic grid positions in the first iteration. After
that, we visit only points from an existing SPR in order to update it (see Algorithm 2.2). As mentioned in Sec-
tion 2.2, a parameter hk controls the addition of safety points on finer scales, and ek is the threshold value.

Since in the course of the WENO-MRS scheme, Algorithm 2.1 is used only once, namely to calculate the
SPR of one of the components of the initial vector
Uðx; 0Þ ¼ U0ðxÞ :¼ ð/1;0ðxÞ; . . . ;/N ;0ðxÞÞ
T
; U0ðxÞ 2 E/max

;

the input data for Algorithm 2.1 is the complete multiresolution representation (2.3) of the fine-grid represen-
tation u0 :¼ ð/i;0ðx0

0Þ;/i;0ðx0
1Þ; . . . ;/i;0ðx0

N0
ÞÞ for a fixed value of the index i, i 2 {1, . . . ,N}.

Algorithm 2.1.

1. Set flags: îðj; kÞ  0, 1 6 j 6 Nk, 1 6 k < Lc, îðj; LcÞ  1, 1 6 j 6 NLc .
2. Thresholding and extension:
do k = 1, . . . ,Lc

do j = 1, . . . ,Nk
if jdk
j jP ek then

îðm; kÞ  1, m = j � 1, j, j + 1
if jdk

j jP hk and k > 1 then
îð2j� 1; k � 1Þ  1, îð2j; k � 1Þ  1
endif

endif
enddo

enddo

3. Di :¼ fðj; kÞĵiðj; kÞ ¼ 1g:

In the second and all subsequent time steps of the WENO-MRS method, we need to update the SPR from
the respective previous time step. To obtain a new SPR after a time iteration is completed (here, a TVD
Runge–Kutta cycle), we utilize an algorithm proposed in [24], which performs the wavelet transform only
for those points that correspond to significant positions, i.e. positions in D. To compute the predictor, if
any point value is needed that is not included at the sparse point representation, the value is recursively inter-
polated from a coarser scale. The algorithm will terminate, since all function values of the coarsest grid belong
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to the SPR at any time step. After this sparse wavelet transform, the thresholding and extension operations are
performed as in Algorithm 2.1 in order to update the flags. New point values to be included in the SPR are
obtained in the same way by interpolation from coarser levels.

After each time step, this process is repeated: new details are computed, new flags are determined and
according to the new flags, positions are included on or excluded from the updated sparse grid. In the case
of inclusion, interpolated point values are associated to the new grid position. According to [3], one could keep
the same grid configuration for more than one time step, and then execute the necessary update. The number
of time steps during which a grid is kept unaltered is associated with the speed of wave propagation.

We assume that Algorithm 2.2 is applied to new solution values /n
i ðxk

j Þ � /iðxk
j ; tnÞ for ðj; kÞ 2 D � C,

i = 1, . . . ,N, where C is the sparse grid of the old SPR. In other words, it is assumed that the update of the
solution from tn�1 to tn has been performed on C. Algorithm 2.2 then applies to one selected component
i 2 {1, . . . ,N}, such that the input data are fuk

j :¼ /n
i ðxk

j Þ : ðj; kÞ 2 Cg.

Algorithm 2.2.

1. Local wavelet transform:

do k = Lc, . . . ,1

for ðj; kÞ 2 D

Compute the predictor ~uk�1

2j�1 and the detail dk
j ¼ uk�1

2j�1 � ~uk�1
2j�1

endfor

enddo

2. Thresholding, extension and inclusion of a point into the SPR:

do k = 1, . . . ,Lc

for ðj; kÞ 2 D

if jdk

j jP ek then
include missing neighbors into the SPR:
îðm; kÞ  1, m = j � 1, j, j + 1
if jdk

j jP hk and k > 1 then
îð2j� 1; k � 1Þ  1, îð2j; k � 1Þ  1
endif

else

îðj; kÞ  0
endif

endfor

enddo

3. Di :¼ fðj; kÞĵiðj; kÞ ¼ 1g:

Once updated versions of all sets D1; . . . ;DN are available, the new sparse grid C is defined by (2.6).
Let us also comment that for certain applications, it is sufficient to inspect the details of one scalar variable

(for example, density in gas dynamics) rather than of all components (as we do) to determine the set of sig-
nificant positions. Clearly, this would accelerate the computation of the SPR, which is done here by an N-fold
application of Algorithms 2.1 and 2.2. However, kinematic flow models include situations in which there is a
complete spatial segregation of species (which is especially likely to occur in the traffic model), so that one
scalar component cannot be used as a smoothness indicator. One quantity that potentially could capture
all discontinuities of the individual densities /1 to /N is the global density / = /1 + � � � + /N. Nevertheless,
for these models / does not appear to be a smoothness indicator, for reasons we briefly discuss in Section
4.2.4 in light of numerical results for Example 6.

2.4. Time discretization

For the time discretization of the sample system otU ¼LðUÞ � �oxfðUÞ, we utilize the general class of
explicit nRK-step TVD Runge–Kutta schemes (see [40])
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Uð0Þj :¼ Un
j ; UðiÞj :¼

Xi�1

k¼0

ðaikU
ðkÞ
j þ DtbikLjðUðkÞÞÞ; i ¼ 1; . . . ; nRK; Unþ1

j :¼ UðnRKÞ
j : ð2:7Þ
The scheme is characterized by the coefficients aik and bik, which need to satisfy aik P 0, ai0 + � � � + ai,i�1 = 1
for i = 1, . . . ,nRK, and certain additional conditions to ensure the TVD property.

We limit ourselves here to the zero-flux initial-boundary value problem for (1.2); in this case it is convenient
to distinguish between the interior operators L1; . . . ;LN0�1 and the boundary operators L0 and LN0

, which
result from including the boundary conditions in the fully discrete version. The scheme used specifically in this
paper is the of TVD Runge–Kutta scheme of order and step number nRK = 3:
Uð1Þj ¼ Un
j þ DtLjðUnÞ; Uð2Þj ¼

1

4
3Un

j þ Uð1Þj þ DtLjðUð1ÞÞ
� �

;

Unþ1
j ¼ 1

3
Un

j þ 2Uð2Þj þ 2DtLjðUð2ÞÞ
� �

; j ¼ 0; . . . ;N 0; n ¼ 0; 1; 2; . . . :

ð2:8Þ
2.5. Space discretization

We assume that the SPR of the numerical solution to be advanced over the next time step is already built
either by Algorithm 2.1 (for the first time step) or Algorithm 2.2 (for all other time steps). Point values of the
initial solution of (1.2) are given on a uniform fine grid G0, and the corresponding SPR is considered already
built, where the sparse grid is denoted by C. To simplify notation, we denote in this section by
�U ¼ ð�/1; . . . ; �/N ÞT solution vectors belong to the SPR. (We recall that the SPR is unified in the sense that
the sparse representation is the same for all species.) The numerical fluxes that determine the evolution of
(1.2) will be calculated on C. A conservative semi-discrete approximation UiðtÞ ¼ ð�/1;iðtÞ; . . . ; �/N ;iðtÞÞT to
the exact solution �Uðxi; tÞ of (1.5) satisfies the system of ODEs
dUi

dt
þ 1

Dxi

ðf̂ iþ1=2 � f̂ i�1=2Þ ¼ 0; ð2:9Þ
where f̂ iþ1=2 is the numerical flux associated with xi + Dxi+1/2, where xi 2 C and Dxi :¼ ðDxiþ1 þ DxiÞ=2.
To guarantee flux upwinding, we apply a Lax–Friedrichs flux splitting to each component of the exact flux

function: f(U) = f+(U) + f�(U) for U 2 E/max
, where f	ðUÞ :¼ 1

2
ðfðUÞ 	 aUÞ for U 2 E/max

. The parameter a
should equal the spectral radius of JfðUÞ. However, a closed formula for this quantity is at least difficult
to obtain. For the multi-species traffic model, Zhang et al. [51] choose instead
a ¼ max
i2C

max
j¼1;...;N

vjðUiÞ
�� ��: ð2:10Þ
We have adopted this expression and find that it works well for the models studied herein. Nevertheless, recent
analyses in [5,51] imply that rigorous estimates of the eigenvalues of JfðUÞ, which are available for specific
models, are slightly larger, see Sections 3.1 and 3.2.

Note that a is determined anew in each time step. Consequently, the value of Dt is also corrected in each
time step respecting the condition aDt=Dxi 6 CFL, where CFL is the CFL number.

The numerical flux is obtained as sum of the WENO approximations for each flux splitting components:
f̂ iþ1=2 ¼ fþ;WENO
iþ1=2 þ f�;WENO

iþ1=2 : ð2:11Þ
In Fig. 1 the arrow with ‘‘+’’ corresponds to the approximation f�,WENO, while the one marked with ‘‘�’’ cor-
responds to f+,WENO.

The general WENO scheme is described in a simplified formulation, namely for uniform grids, in [50]. To
adapt this simple formulation to the SPR, we follow Holmström’s concept [24] to evaluate the differential
operator on the sparse representation. Here, the numerical fluxes are computed from data of the same refine-
ment level (local scale) such that all points involved in the computation of one WENO flux vector have the
same distance di = min{Dxi,Dxi+1}. If any point is missing, we interpolate the corresponding solution value
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from a coarser scale and obtain the necessary flux components. (This procedure is well defined, since all values
from the coarsest grid always belong to the SPR.) Values obtained by interpolation are only auxiliary values to
keep the stencil locally uniform. No numerical flux will be computed in their positions. Once all numerical flux
vectors (2.11) have been computed, the system of ODEs (2.9) could be solved over one time step by an explicit
Euler-type method; however, since we herein use a third-order Runge–Kutta method, three rounds of WENO
flux computations are necessary to advance the solution over one time step.

The fifth-order WENO approximation takes a convex combination of all possible approximations con-
structed with three-point stencils, Sq ¼ fxi�q; . . . ; xi�qþ2g, q = 0,1,2, which contain the position xi+1/2 as an
interior point or the nearest neighbor from the boundaries. This point does not belong to the sparse grid
C. It is just an auxiliary position to calculate the numerical flux. The WENO approximations are computed
exactly as is described in the literature, see e.g. [40, Chapter 2]; details are omitted here.

Due to the conservativity of the method in conjunction with the discretization of the zero-flux or periodic
boundary conditions, it is ensured that the total mass of each species is conserved.

2.6. Multiresolution algorithm

We present the multiresolution scheme as an operation on the sparse grid C, in which numerical fluxes are
computed by the above-described WENO procedure. We calculate the approximate solutions Un;0,
n = 1,2, . . . , until the final time T is reached, by the following algorithm.

Algorithm 2.3

t 0
while t 6 T do
1. Un(x) is given on the finest grid (n = 0) or on a sparse grid (n > 0). Use Algorithms 2.1 (n = 0) or 2.2
(n > 0) to calculate its SPR associated to C with Ns + 1 points.

2. Compute the local scale for each point of C and if necessary, the auxiliary neighbors to compute the
numerical fluxes with locally uniform stencils.

3. Compute a by (2.10) and Dt CFLDxi=a, considering the smallest scale present on C and respecting
the CFL condition. Set t t + Dt.
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4. Uð0Þj  Un;0
j ; xj 2 C
do i = 1, . . . ,nRK

(at this point, the values Uð0Þj ; . . . ;Uði�1Þ
j for xj 2 C are known)

do k = 0, . . . , i � 1
L0ðUðkÞÞ  �
1

Dx0

f̂0
1=2; LNsðUðkÞÞ  

1

DxNs

f̂0
Ns�1=2

LjðUðkÞÞ  �
1

Dxj

ðf̂0
jþ1=2 � f̂0

j�1=2Þ; xj 2 C n fx0; xNsg

enddo
UðiÞj  
Xi�1

k¼0

ðaikU
ðkÞ
j þ DtbikLjðUðkÞÞÞ; xj 2 C
enddo

Unþ1;0
j  UðnRKÞ

j ; xj 2 C,
n n + 1

endwhile
2.7. Other boundary conditions

Periodic boundary conditions do not require separate formulas for L0 and LN0
, since Lj can always be

computed from the ‘‘interior’’ formula if we identify UNsþm with Um, m = 1,2,3, . . . , according with C. More-
over, no extrapolation is needed to compute the WENO interpolation and the filters for the Lagrangian inter-
polation are always for the centered stencil, as indicated in (2.1). For our examples of initial value problems,
however, the computational domain has been chosen large enough so that the solution never reaches its
boundary, so Algorithm 2.3 effectively also handles initial value problems.

3. Examples of kinematic flow models

3.1. Traffic flow models

The classic LWR kinematic model [30,35] for unidirectional traffic flow on a single-lane highway starts
from the principle of ‘‘conservation of cars’’ ot/ + ox(/v) = 0 for x 2 R and t > 0, where / is the density of
cars as a function of distance x and time t, and v is the velocity of the car located at (x, t). The original
LWR model is a single-species model, whose basic assumption v = v(/) states that each driver instantaneously
adjusts his velocity to the local car density. A common choice is v(/) = vmaxV(/), where vmax is a maximum
velocity a driver assumes on a free road, and the hindrance function V(/) models the presence of other cars,
which urges each driver to adjust his speed. Thus, the flux is
f ð/Þ :¼ /vð/Þ ¼
vmax/V ð/Þ for 0 6 / 6 /max;

0 otherwise;

�
ð3:1Þ
where /max is the maximum ‘‘bumper-to-bumper’’ car density. The simplest obvious choice is the linear inter-
polation V(/) = V1(/) :¼ 1 � ///max.

Recently, Wong and Wong [46] and Benzoni-Gavage and Colombo [2] independently formulated an exten-
sion of the LWR model to multi-class traffic flow, considering that cars belong to a finite number N of classes
(species), each associated with a function v = vi(U). It is assumed that drivers of each species adjust their veloc-
ity to the global car density / = /1 + � � � + /N seen at a point (x, t), which implies vi(U(x, t)) = vi(/(x, t)) for
i = 1, . . . ,N, and that all drivers adjust their velocity in the same way, such that
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viðUÞ ¼ vi
maxV ð/Þ; i ¼ 1; . . . ;N : ð3:2Þ
Here, vi
max is the maximum velocity attained by car species i and the function V : [0,/max]! [0,1] describes the

attitude of drivers [2], that is, represents the same hindrance function as in the single-class case.
For the traffic model, we may assume a circular road of length L and assume an initial traffic density
Uðx; 0Þ ¼ U0ðxÞ ¼ ð/0
1ðxÞ; . . . ;/0

N ðxÞÞ
T 2 E; 0 6 x 6 L: ð3:3Þ
The periodicity condition is
/ið0; tÞ ¼ /iðL; tÞ; t > 0; i ¼ 1; . . . ;N ; ð3:4Þ

however, we herein only consider compactly supported data and relatively short simulation times, so that our
solutions are also solutions to the initial value problem posed for x 2 R, that is, for an infinite road.

Finally, a recent analysis by Zhang et al. [51] implies that for 0 < v1
max < v2

max < � � � < vN
max, the eigenvalues

ki = ki(U), i = 1, . . . ,N, of the Jacobian JfðUÞ of (1.4) satisfy
v1 þ V 0ð/Þð/1v1
max þ � � � þ /N vN

maxÞ 6 k1 6 v1 6 k2 6 � � � 6 vN�1 6 kN 6 vN 8U 2 E/max
;

where vi = vi(U), i = 1, . . . ,N. Since the leftmost expression is bounded, but possibly negative for sufficiently
large /, and using (3.2), an estimate a of the spectral radius .ðJfðUÞÞ with a 6 .ðJfðUÞÞ is given by
a ¼ max vN
maxV ð/Þ; jv1

maxV ð/Þ þ V 0ð/Þð/1v1
max þ � � � þ /N vN

maxÞj
� �

:

3.2. Sedimentation of polydisperse suspensions

We consider a polydisperse suspension of rigid spherical particles which are dispersed in a viscous fluid of
density .f and of dynamic viscosity lf. The solid particles belong to N different species having size (diameter) di

and density .i, i = 1, . . . ,N, where di 6¼ dj or .i 6¼ .j for i 6¼ j, and d1 P d2 P � � �P dN. Model equations for the
three-dimensional motion of the mixture were derived in [11] from the mass and linear momentum balances
for the fluid and each solid species, introducing constitutive assumptions and simplifying the model equations
as a consequence of a dimensional analysis. Details are presented in [5,10,11] and are omitted here. The rel-
evant parameters are di :¼ d2

i =d2
1 and �.i :¼ .i � .f for i = 1, . . . ,N. Here, /max denotes a maximum solids vol-

ume fraction, which we here assume to be constant. Moreover, we introduce the vector �. :¼ ð�.1; . . . ; �.N ÞT, the
cumulative solids fraction / :¼ /1 + � � � + /N, the viscosity parameter l :¼ �gd2

1=ð18lfÞ < 0, where g is the
acceleration of gravity and the hindered settling factor V = V(/), which may be chosen as
V ð/Þ ¼ ð1� /Þn�2 if U 2 E/max

0 otherwise;

(
n > 2: ð3:5Þ
Then, according to the MLB model, the phase velocity of particle species i is given by
viðUÞ ¼ lV ð/Þ dið�.i � �.TUÞ �
XN

m¼1

dm/mð�.m � �.TUÞ
" #

; i ¼ 1; . . . ;N : ð3:6Þ
For one-dimensional batch settling of a suspension with initially given composition in a closed vessel of depth
L, the initial condition is again (3.3), while the zero-flux boundary conditions are
fjx¼0 ¼ fjx¼L ¼ 0: ð3:7Þ

When the particles differ in size only (i.e., .1 = .2 = � � � = .N ¼: .s and d1 > d2 > � � � > dN), (3.6) simplifies to

the following expression, where v1 = l(.s � .f) is the Stokes velocity, that is, the settling velocity of a single
particle in an unbounded medium, of the largest species:
viðUÞ ¼ v1ð1� /ÞV ð/Þðdi � ðd1/1 þ � � � þ dN/N ÞÞ; i ¼ 1; . . . ;N : ð3:8Þ

Choices of v1(U), . . . ,vN(U) for the polydisperse sedimentation model alternative to (3.6) are discussed in

[9,48].
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The ellipticity criterion for N = 2 is equivalent to a criterion [1] for the occurrence of instabilities like blobs
and fingering in bidisperse sedimentation [45]. By a perturbation analysis, it was shown in [11] that loss of
hyperbolicity, that is the occurrence of complex eigenvalues of JfðUÞ, provides an instability criterion for
polydisperse suspensions of arbitrary numbers of species N. In [5,11] it is shown that the MLB model has
desirable stability properties. In [5] it is proved that for equal-density particles (�.1 ¼ � � � ¼ �.N ¼ .s � .f ), arbi-

trary N and particle size distributions, the system (1.5) is strictly hyperbolic for all U 2 E with
/1 > 0, . . . ,/N > 0 and / < 1 if the flux vector (3.6) is chosen. The proof is similar to that of Rosso and Sona
[36] outlined in Section 1.2. The hyperbolicity, and thus stability result for equal-density spheres is in agree-
ment with experimental evidence since instability phenomena never have been observed with this type of mix-
tures, but always involve particles of different specific densities [45].

For the equal-density case, Berres et al. [5] show that the eigenvalues ki = ki(U), i = 1, . . . ,N, of JfðUÞ
satisfy
8U 2 E/max
: v1ðUÞ 6 k1 6 v2ðUÞ 6 � � � 6 vN ðUÞ 6 kN 6 uðUÞ;

uðUÞ :¼ lð.s � .fÞð�2dTUV ð/Þð1� /Þ þ ðV ð/Þð1� /ÞÞ0ðdTUþ /ÞÞ;
ð3:9Þ
where d :¼ (d1, . . . ,dN)T. Since vi(U) 6 0 for i = 1, . . . ,N, but possibly u(U) > 0 for / sufficiently large, a rigor-
ous estimate a of the spectral radius .ðJfðUÞÞ with a 6 .ðJfðUÞÞ is given by a = max{jv1(U)j,u(U)}. It is
worth noting that if the function V(/) is given by (3.5), for example, and U 2 E1=n � E/max

, then u(U) does
not exceed the velocity of the interstitial fluid (see [11] for details), so that at least in the dilute regime, all eigen-
values are bounded by the velocities of the N solids phases or the fluid phase. Note that (3.9) is not valid for
suspensions with particles having different densities.

3.3. Separation of oil-in-water dispersions

Rosso and Sona [36] analyze the separation of small oil droplets in an oil-in-water dispersion. The model
outlined in [36] can be written in the form (1.2) if we consider oil droplets of N volumes
V1 >V2 > � � � >VN > 0, where x is the upward-increasing height variable and /i = /i(x, t) is the volume
fraction occupied by droplets of volume Vi. As Rosso and Sona [36] argue, the differential motion of the par-
ticle species is not driven by differences in viscosity. The basic nonlinearity is introduced by a viscosity function
ld = ld(U). If we denote again by lf the viscosity of pure water (without oil), then ld(U) is assumed to satisfy
ld 2 C1ðEÞ, ld(U) > 0 and old/o/i > 0 for i = 1, . . . ,N for all U 2 E/max

and ld(0, . . . ,0) = lf. The velocity func-
tions v1(U), . . . ,vN(U) are then given by
viðUÞ ¼ c
V

2=3
i

ldðUÞ
ð1� /Þ; i ¼ 1; . . . ;N ; c :¼ 2gð.f � .oilÞ

9ð4p=3Þ2=3
;

where g, .f and .oil denote the acceleration of gravity, the density of pure water and density of pure oil, respec-
tively. For separation of a dispersion in a column of height L, we could again employ the initial and boundary
conditions (3.3) and (3.7).

4. Numerical examples

4.1. Multi-species traffic model (Examples 1 and 2)

In [49] Zhang et al. present numerical simulations of a traffic flow model with N = 9 species (classes) of vehi-
cles with the maximum velocities vi

max ¼ ð52:5þ i � 7:5Þ km=h, i = 1, . . . , 9. We consider here Cases 1 and 2 sim-
ulated in [49], where the function V(/) = exp(�(///*)2/2) with the parameter /* = 50 cars/km is used. Both
cases, which form our Examples 1 and 2, consist of the evolution of an isolated initial traffic ‘platoon’ given by
U0ðxÞ ¼ pðxÞ/0ð0:04; 0:08; 0:12; 0:16; 0:2; 0:16; 0:12; 0:08; 0:04ÞT;

pðxÞ :¼
10x for 0 < x 6 0:1;

1 for 0:1 < x 6 0:9;

�10ðx� 1Þ for 0:9 < x 6 1;

0 otherwise;

� ð4:1Þ
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where x denotes distance measured in kilometers, and /0 = 40 cars/km in Case 1 of [49] (our Example 1) and
/0 = 120 cars/km in Case 2 of [49] (our Example 2).

For the numerical simulations of Examples 1 and 2, the coarsest and finest grids of the multiresolution rep-
resentation consist of 24 and N0 = 215 points, respectively, where the total number of points of a scale refers to
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Fig. 2. Example 1 (traffic model, N = 9): numerical solution at t = 0.005 h (top) and t = 0.01 h (bottom). The top plot also shows the
initial data /5(x,0) and /(x,0). Here and in Figs. 3, 8 and 9, the numbers 2,4, . . . , 12 of the right vertical axis represent the level k of the
multiresolution. The finest grid, k = 0, is represented by the numerical solution.
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the x-interval [0,10 km]. The threshold values are e0 = 10�3, ek = 2.5ek�1 and hk = 2.5ek, k = 1, . . . ,Lc and
CFL = 0.15 for both cases. Here and in Examples 3–6, the interpolator used in the interpolating multiresolu-
tion transform is the one given by (2.1) with r = 4 or its non-periodic version (2.2).

Figs. 2 and 3 show portraits of the numerical solution of Example 1 at four different times, along with cor-
responding positions of significant multiresolution coefficients. Fig. 4 shows the evolution of the number of
significant multiresolution coefficients, or equivalently, of the compression rate. The left diagram of Fig. 5
displays the total simulated density / at six different times, while the right diagram shows simulated traffic
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Fig. 3. Example 1 (traffic model, N = 9): numerical solution at t = 0.03 h (top) and t = 0.045 h (bottom).
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flow at two different spatial positions as functions of time. Figs. 6 and 7 compare numerical results at one fixed
time obtained by the WENO-MRS method for N0 = 213, 214 and 215 points in the finest grid with a solution
obtained from the WENO method on a fixed mesh with 213 points, i.e., with Dx = 10 km/
8192 = 1.221 · 10�3 km. We restrict ourselves to short x-intervals displaying the solution component /4

and the cumulative density / in the left and right plots of Fig. 6, respectively.
Figs. 2 and 3 show how the WENO-MRS method adaptively concentrates computational effort in regions

of strong variation, that is, near the shocks that separate regions of different composition. These shocks are
resolved very sharply, as are thin layers between them. Moreover, the multiresolution method moves with the
solution: the finer levels are used on the support of the solution (that is, where the density is different from
zero) only. In the initial stage of the simulation, as can be seen in the top plot of Fig. 2, for example, the solu-
tion is composed of kinematic shocks and smooth density variations at both ends of what initially was a pla-
toon, and that both zones are separated by a short segment where all components are constant and only the
three coarsest levels are occupied. On the other hand, the plots of Fig. 3 show that the transition of the con-
centration profiles of each species to zero value at the right end of their support takes place continuously, but
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not smoothly, such that a ‘‘kink’’ appears. The multiresolution technique handles this situation by developing
a sawtooth-shaped feature. This feature is visible e.g. between x = 4.5 km and x = 6.5 km in the bottom plot
of Fig. 3, where the grid to the left of each ‘‘kink’’ is slowly coarsened as the derivative of the solution of each
component slowly increases (with x decreasing) to zero value. The number of points used in our multiresolu-
tion method for this case is always less than 5000 (see Fig. 4), such that the compression rate achieved is
always better than six.

Examples 1 and 2 have been chosen such that comparison with the numerical results obtained by Zhang
et al. [49], who used fixed-grid WENO schemes, is possible. The accuracy used in [49] is 1600 grid points
for the x-interval [0, 2 km], which is roughly equivalent to 213 points on the x-interval [0,10].

Fig. 5 presents the same solution as Fig. 6 of [49]. However, in [49] solutions are becoming slightly oscil-
latory, for example, as is visible in the left plot of Fig. 6 of [49] in the t = 0.025 h profile between x = 1.5 km
and x = 1.6 km, or in the right plot of the same figure in the x = 1.2 km flux plot near t = 0.02 h, whereas our
profiles are not oscillatory in corresponding positions, see Fig. 5. Note that the t = 0.015 h profile included in
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the left plot of Fig. 5 permits comparison with the solutions shown in Fig. 5 of [49], where the performance of
the Lax–Friedrichs and WENO schemes at various discretizations are compared.

Furthermore, Fig. 6 on one hand illustrates that the uniform grid WENO solution is almost identical to the
WENO-MRS solution obtained on the same underlying (finest) grid (with 213 points); on the other hand, we
see that the resolution becomes sharper when we pass to WENO-MRS solutions with 214 or 215 grid points.
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The increase of accuracy under refinement is unsurprising, but note that for this example, according to Fig. 7,
the number of significant positions of the 214 grid is less than twice that of the 213 grid and that the 215 grid
involves only slightly more significant positions than the 214 grid, so the increase of accuracy is achieved under
moderate increase of computational effort only. Fig. 7 also illustrates that the number of significant positions
of all WENO-MRS solutions shown in Figs. 2, 3, 5 and 6 always remains below the number 213 associated
with the fixed grid.
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The preceding observations are in general also valid for Example 2. For that case, Figs. 8 and 9 show the
numerical solution at four different times, along with corresponding positions of significant multiresolution
coefficients. Fig. 10 shows the evolution of the number of significant multiresolution coefficients, or equiva-
lently, of the compression rate attained. The left diagram of Fig. 11 displays the total simulated density /
at seven different times, while the right diagram shows the simulated traffic flow at two different spatial posi-
tions as functions of time.

The numerical solution of Example 2 evolves in a slightly different way than that of Example 1, since an
appreciable zone is formed in which all solution components decrease smoothly (for example, in the top plot
of Fig. 9, this zone is roughly located between x = 0.8 km and x = 2.5 km). The multiresolution method
adapts itself to this continuous variation, since significant positions on the second finest, but not on the finest
level are filled. Fig. 10 again illustrates the efficiency of the method, since the number of significant coefficients
for our simulation remains well below the number of 215 fine grid positions.
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The parameters of our Example 2 are the same as that of Case 2 in [49]. The solution profiles of both dia-
grams of Fig. 11 can be compared with numerical results displayed in Fig. 10 of [49], which again were
obtained by a fifth-order WENO scheme on a uniform fine grid with Dx = 2 km/1600.

4.2. Sedimentation of polydisperse suspensions (Examples 3–6)

4.2.1. Settling of a bidisperse suspension of equal-density spheres (Example 3)

The experiment by Schneider et al. [38] is a standard test case for analytical and numerical techniques for
polydisperse suspensions, and is used here for the WENO-MRS method. In this example, the parameters are
N = 2, .1 = .2 = .s = 2790 kg/m3, d1 = 4.96 · 10�4 m, d2 = 1.25 · 10�4 m, .f = 1208 kg/m3 and lf = 0.02416
Pa s. Here, we have d1 = 1 and d2 ¼ d2

2=d2
1 ¼ 0:06351213. For this mixture, we select the phase space E0:68 [10]

and the function V(/) given by (3.5) with the exponent n = 4.7, as suggested in [38]. As in [38], we consider an
initially homogeneous suspension with U0 ¼ ð/0

1;/
0
2Þ

T ¼ ð0:2; 0:05Þ in a vessel of height L = 0.3 m. In our
simulation, the coarsest and finest grids consist of 23 and 214 subintervals, respectively. The threshold values
are e0 = 10�6, ek = 2.0ek�1 and hk = 2.0ek, k = 1, . . . ,Lc and CFL = 0.15.

Fig. 12 shows the numerical solution as concentration profiles at four different times, together with the sig-
nificant positions of the multiresolution representation. Furthermore, we calculated a local density of signif-
icant multiresolution positions by subdividing the interval [0,L] into 27 = 128 subintervals, counting the total
number of significant positions in each subinterval, and dividing the result by the maximal possible number of
27 significant positions per subinterval. The result has been plotted in the left diagram of Fig. 13. Finally, the
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right diagram of Fig. 13 shows the evolution of the total number of significant positions and the equivalent
compression rate as a function of time.

The sedimentation model is associated with boundary conditions, and our multiresolution solution displays
a concentration of significant positions near the boundaries x = 0 and x = L. Apparently, the exact solution
approximated is the same as the one simulated earlier in [9,10] by the Nessyahu–Tadmor [34] and the Kurga-
nov–Tadmor [27] methods, respectively. A recent semi-analytical solution construction [4] confirms that this
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Fig. 15. Example 3: approximate L1 error in / produced by the WENO-MRS method for six choices of e0 compared with errors generated
by the WENO scheme on equidistant (non-sparse) grids with N0 subintervals.



Table 2
Example 3: Simulation times for fine grid solutions, considering different discretizations

N0 29 210 211 212 213 214

CPU time [min] 2.03 8.05 31.50 129.51 548.87 1371.66
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solution satisfies Liu’s entropy condition, which enforces that several kinematic shocks appearing in the ori-
ginal construction advanced in [38] be replaced by continuous transitions (rarefaction waves). Such a rarefac-
tion wave appears in the t = 54 s plot (top left) of Fig. 12 near x = 0.05 m. Another basic feature of the
solution is the formation of a thin layer of sediment, consisting of the smaller species 2 only, on top of a sed-
iment consisting mainly of the larger species 1, with a small fraction of the smaller species 2. Our solution
shows that this layer of sediment is accurately reproduced by the WENO-MRS scheme. Overall, the scheme
also handles this example efficiently, since except at the boundary, significant positions of the finest grids
appear near the kinematic shocks only. This also becomes apparent in the left diagram of Fig. 13. Finally,
the right diagram of Fig. 13 shows that for this class of problems, which in many circumstances leads to a
final solution consisting of areas of constant composition separated by stationary shocks, the WENO-MRS
method allows considerable compression rates.

The threshold value e0 and the choice of ek for each level k play a special role for the performance of the
WENO-MRS method, since computational time and accuracy are related to their variations. For Example 3,
Table 1 shows how computational time increases with decreasing values of e0, indicating the increase of com-
putational effort incurred by more restrictive thresholding.
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left) and t = 792.37 s (bottom right).
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On the other hand, we performed two additional numerical experiments based on Example 3 in order to
study the effect of different choices of the parameter e0. The result of the first of these additional experiments
is presented in Fig. 14, which shows the evolution of the approximate error in L1 norm under different choices
of the threshold value e0, where the strategy to obtain ek is kept as in the previous discussion of this example,
ek = 2.0ek�1. The finest grid in the WENO-MRS method consists of N0 = 214 subintervals. The error is com-
puted here with respect to a fine-grid reference solution. We observe that the error consistently decreases as the
threshold value decreases. It is emphasized that within our WENO-MRS method, the solution is not com-
puted on a uniform grid in order to possibly correct the multiresolution (thresholding) parameters or to
decrease the error between different time iterations. The wavelet transform is needed to adaptively generate
the SPR of the solution, that is, it controls the grid adaptivity, but a posteriori error estimates are not utilized
here.

The second additional numerical experiment is based on the same WENO-MRS solutions whose errors are
displayed in Fig. 14, but we are now interested in comparing the performance of the WENO-MRS method in
terms of CPU time and accuracy (L1 error) with solutions obtained on a sequence of equidistant (non-sparse)
grids. In Fig. 15 we again display the approximate L1 error in / generated by various choices of e0, each one in
a separate plot, and add the corresponding approximate L1 errors produced by the conventional WENO
scheme on equidistant, fine grids with the indicated numbers N0 of subintervals. The plots of Fig. 15 indicate
that for the three choices e0 = 10�5, 10�6 and 10�7, the error obtained by the WENO-MRS solution is always
smaller than, and for e0 = 10�4 is for large times (t > 120 s) smaller than, the error obtained by a solution on a
uniform grid with N0 = 213. Furthermore, Tables 1 and 2 allow to compare the time spend with the MRS solu-
tion and with the uniform solution with 213 points. Of course there exists an ‘‘overhead’’ associated with the
WENO-MRS method, since generating and updating a solution point belonging to an SPR is considerably
more costly than handling one such point in a uniform grid.

In this work, we do not measure specifically the time required for running through each block of routines,
and due to the diversity and nonlinearity of the models, a reliable uniform estimate of the percentage of effort
that goes into the administration of the multiresolution representation seems difficult. We do, however,
acknowledge that this ‘‘overhead’’ is still considerable for the example chosen. For example, Table 1 tells
us that our WENO-MRS method with e0 speeds up the computation (compared with a solution on the under-
lying uniform fine grid) by a factor of 2.86. On the other hand, the right plot of Fig. 13 implies that during the
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time interval [0,200 s], the SPR never contains more than 211 points. The computation time for a solution on a
uniform grid with N0 = 211 points without multiresolution is, however, only 31.5 min.

This example (as do others presented herein) shows that for the class of models considered, the number of
wavelet coefficients can vary strongly with respect of the choice of the threshold value e0. The choice of this
threshold value forms a heuristic component, which is a limitation to be surmounted. Furthermore, since the
MRS ‘‘overhead’’ is significant, it would be interesting to attempt speeding up the present method by keeping
the SPR unaltered over several time steps. Of course, our WENO-MRS method could be improved signifi-
cantly if the limitation of the time step according to the finest grid size were removed, as in the recent finite
volume multiresolution schemes by Stiriba and Müller [42]. In any case, the sharp concentration of significant
positions near the shocks forming in this and other examples, and the adaptive buildup of the SPR display that
the gain of memory is satisfactory.

4.2.2. Settling of a suspension with particles of four different sizes (Example 4)

This example is related to work by Greenspan and Ungarish [21] and Bürger et al. [9], who consider the
settling of a 4-disperse suspension (N = 4) of particles having the same density but different sizes, correspond-
ing to d2 = 0.64, d3 = 0.36 and d4 = 0.16. The solution construction for this case is presented in [21] in dimen-
sionless terms. As in [9], we here adopt the same (nominal) parameters as for Example 3 (.s = 2790 kg/m3,
d1 = 4.96 · 10�4 m, .f = 1208 kg/m3, lf = 0.02416 Pa s, L = 0.3 m) so that results are comparable. In accor-
dance with [21], the hindered settling factor is chosen as the following variant of (3.5):
Fig. 18
�.2 ¼ 1
V ð/Þ ¼ ð1� /=/maxÞ
n�2 if U 2 E/max

0 otherwise;

(
n > 2; ð4:2Þ
here, we choose /max = 0.6, n = 4, and as in [9], U0 = (0.05, 0.05, 0.05,0.05)T.
For this case, the coarsest and finest grids consist of 25 and 215 points, respectively. The threshold values are

e0 = 10�5, ek = 2.5ek�1 and hk = 2.5ek, k = 1, . . . ,Lc and CFL = 0.1 for both cases.
Fig. 16 shows the numerical solution at four different times, along with the corresponding significant posi-

tions, while Fig. 17 records the number of significant coefficients or the equivalent compression rate.
The top two plots of Fig. 16 illustrate that the significant positions of the multiresolution method accurately

move with the four downwards-propagating shocks. These shocks include three sectors in which, from top to
bottom, only species 4, species 3 and 4 and species 2, 3 and 4 are present. Note that in these three zones, the
predicted concentrations of the present species is higher than the initial concentration 0.05. This effect is
. Example 5 (sedimentation model, N = 2): instability region of the MLB model for d2 ¼ d2
2=d2

1 ¼ 0:044112, �.1 ¼ 500 kg=m3 and
450 kg=m3.
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consistent with the Rankine–Hugoniot condition (1.6), is also predicted by the shock construction done in
[21], and is observed experimentally [41].

For N = 1, using (4.2) with n = 4 produces a solution that will never attain a steady state. This is basically
due to the horizontal tangent the function / ´ /V(/) has at the end / = /max of its support, and therefore
admits arbitrarily slow rarefaction waves. In other words, due to our choice of (4.2), we cannot expect that a
steady state appears within finite time, as is the case in Example 3. Rather, we have to deal with slowly moving
shocks. This has become apparent in Figs. 14–16 of [9]. As the bottom right plot of our Fig. 16 shows, the
multiresolution method is well adapted to handle this situation, since the three finest grids are occupied near
the kinematic shocks only. Moreover, our Fig. 17 indicates that the total number of significant positions
remains nearly constant in the nearly stationary situation, so that refinement and thresholding are well bal-
anced, as one should expect for slowly moving zones of strong variation.

4.2.3. Settling of a bidisperse suspension of particles having two different densities (Example 5)

We consider a bidisperse suspension (N = 2) studied experimentally by Moritomi et al. [33]. The suspension
consists of particles of two different sizes and densities with d2 ¼ d2

2=d2
1 ¼ 0:044112, �.1 ¼ 500 kg=m3 and

�.2 ¼ 1450 kg=m3. The viscosity parameter is l = �3.2819 · 10�4 m4/(kg s). Note that particles of the smaller
species 2 have a larger density. For this mixture, we set /max = 0.68 and use (3.5) with n = 4.7. We consider the
settling of an initially homogeneous suspension of composition U0 = (0.04, 0.04)T in a vessel of height
L = 1 m. It should be emphasized that this example is anomalous in that the model equations have an appre-
ciable instability (ellipticity) region, see Fig. 18.
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Fig. 19. Example 5 (sedimentation model, N = 2): simulation of the settling of a suspension of particles having different densities and sizes
at t = 25 s (top left), t = 75 s (top right), t = 225 s (bottom left) and t = 350 s (bottom right).
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For this example, the coarsest and finest grids consist of 23 and 214 points, respectively. The threshold val-
ues are e0 = 10�6, ek = 2.0ek�1 and hk = 2.0ek, k = 1, . . . ,Lc and CFL = 0.1 for both cases.

Fig. 19 shows the solution together with the set of significant positions and Fig. 20 shows the evolution of
the number of significant positions. In this example, the WENO-MRS method again produces a good approx-
imation with due refinement of the zones of strong variation. As is shown in [4], for the selected initial datum
the solution construction, which obeys Liu’s entropy condition, avoids the ellipticity region, i.e. only values
from the hyperbolicity (stability) region are assumed. Moreover, as is also shown in [4], a stationary solution
develops that includes continuous variations (with respect to x) of the sediment composition, and does not
only consist of different layers of constant composition separated by stationary kinematic shocks. Actually,
a necessary condition for these continuous variations to occur is that the particles have different densities
[4]. We observe that the WENO-MRS solution reproduces this behaviour, and yields a solution similar to
Figs. 4(a) and 4(b) of [6].
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Fig. 20. Example 5 (sedimentation model, N = 2): number of significant wavelet coefficients per iteration, with compression rates
indicated on the right vertical axis.

Table 3
Parameters for the settling of a suspension with N = 11 particle sizes

i di [10�5 m] di /0
i

1 8.769 1.0000 0.000435
2 8.345 0.9056 0.003747
3 7.921 0.8159 0.014420
4 7.497 0.7309 0.032603
5 7.073 0.6506 0.047912
6 6.649 0.5749 0.047762
7 6.225 0.5039 0.032663
8 5.801 0.4376 0.015104
9 5.377 0.3760 0.004511

10 4.953 0.3190 0.000783
11 4.529 0.2668 0.000060
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4.2.4. Settling of a suspension with particles of 11 different sizes (Example 6)

To illustrate that the multiresolution technique is suited to handle systems with a large number of particle
species, we consider a suspension of equal-density particles of N = 11 different sizes. The parameters and ini-
tial concentrations of these size classes are displayed in Table 3. This size distribution was determined by Tory
et al. [44] as a discrete approximation for a suspension of closely-sized spherical particles with continuously,
roughly normally distributed particle sizes [39]. Following [39], we consider a settling column of height
L = 0.935 m. The hindered settling factor found suitable is (3.5) with n = 4.65 and /max = 0.641. According
to [39], a single sphere with diameter 6.694 · 10�5 m has a Stokes velocity of ~v1 ¼ �0:00392 m=s, so we here
use (3.8) with v1 ¼ ð8:769=6:694Þ2~v1 ¼ �0:00673 m=s.
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Fig. 21. Example 6 (sedimentation model, N = 11): simulation of the settling of a suspension of equal-density particles at t = 247.77 s
(top) and t = 330.36 s (bottom).
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For this case, the coarsest and finest grids have 25 and 215 points, respectively. The threshold values are
e0 = 10�6, ek = 2.5ek�1 and hk = 2.5ek, k = 1, . . . ,Lc and CFL = 0.07 for both cases.

The solution at five different times is shown in Figs. 21–23, together with the corresponding sets of signif-
icant positions, while Fig. 24 displays the evolution of the number of significant positions. Note that the ver-
tical axes in Fig. 22 and 23 have been reduced to segments where interesting features of the solution appear;
above and below these segments, the solution is simply obtained by constant extrapolation.

The initial concentrations displayed in Table 3 vary over several orders of magnitude, as do the strengths of
the kinematic shocks appearing in the solution. All of them are captured by the multiresolution method. This
example has been included as an example of the kind of real-world problem one would probably like to solve
by the WENO-MRS method. Nevertheless, one desirable property of any numerical scheme for practical
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Fig. 23. Example 6 (sedimentation model, N = 11): simulation of the settling of a suspension of equal-density particles at time t = 826 s.
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Fig. 24. Example 6 (sedimentation model, N = 11): number of significant wavelet coefficients per iteration, with compression rates
indicated on the right vertical axis.
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applications is that the solution vectors of a kinematic flow problem should remain in the set E/max
of phys-

ically relevant N-component vectors. Even though we here cut the factor V(/) on the boundary / = /max of
E/max

, this property is not ensured a priori by the present scheme and many other schemes. Actually, this prop-
erty has so far been ensured for the Lax–Friedrichs scheme only under certain (mild) additional restrictions on
E/max

, see [19]. Though all numerical solution components of our example are nonnegative everywhere, we
observe in the / portraits in Fig. 22 that although we have / = /max in the interior of each sediment layer,
near the kinematic shocks separating these layers we have narrow zones where the maximum concentration
is slightly exceeded. These numerical artifacts seem to disappear at later times due to slight numerical diffusion
(as can be seen in Figs. 23), but they are distracting, and future refinements of the method presented herein
may be directed towards avoiding them a priori.
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In some of our examples, numerical diffusion still seems to affect the sharpness of resolution of steady-state
shocks. This becomes particularly visible if one compares the plots of Fig. 22 with that of Fig. 23. Neverthe-
less, this phenomenon is not directly related to the multiresolution technique, but is a well-known general con-
sequence of applying universal numerical schemes to stationary data. We should emphasize, however, that the
sharpness of shock resolution visible in our Examples 3 and 4 compares favourably with the quite diffusive
numerical results obtained for the same cases in [9] by the Nessyahu–Tadmor [34] method.

Finally, we refer back to the comment stated towards the end of Section 2.3. We see that in the sediment
zone all concentrations should sum up to / = /max, so that / is constant in that zone, but the sediment
includes steady-state shocks which require local grid refinement (i.e., a small scale of the SPR). The
WENO-MRS method appropriately generates this refinement, since the set of significant positions is deter-
mined according to the local smoothness of each component /1, . . . ,/N. In this situation, the refinement would
probably not have been generated if we had used / as a smoothness indicator (i.e., as the variable evaluated by
Algorithm 2.1), since / (at least in the exact solution) is constant in the sediment zone. This point elucidates
that / does not contain the singularities of all species.
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